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Recent results of Monte Carlo simulations of the ant-in-the-labyrinth method fn 
three-dimensional percolation lattices are reanalyzed in the light of more 
accurate corrections to scaling ansatz, motivated by inconsistent results that 
have appeared in the literature. The results are observed to be sensitive to the 
form of the scaling correction terms. Using a single correction term, we estimate 
the value k = 0.197_+ 0.004 for the anomalous diffusion exponent at criticality. 
When two correction terms are included, k = 0.200_+ 0.002 is obtained. These 
new estimates are consistent with known theoretical bounds, with recent series 
expansion results, and with numerical calculations of the conductance of 
random resistor networks above criticality. 
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Transpor t  phenomena  on percolat ion systems have been studied exten- 
sively in recent years. Of great theoretical interest is the asymptot ic  

behavior  of r a n d o m  walks on percolat ion systems at the critical concentra-  
t ion Pc. Such informat ion  can be related to the behavior  of the conduct ivi ty  

of the system above pc. (1) 
Consider  a d-dimensional  lattice where the lattice sites are occupied 

with probabi l i ty  p/> Pc, and  let a walker perform a r andom walk between 
nearest  ne ighbor  occupied sites of the lattice. One  can study two cases: 
(a) the walker starts its walk on ahy occupied site of the lattice, i.e., it can 
move either on the infinite cluster or on finite clusters, or ( b ) t h e  walk is 
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restricted to the infinite cluster alone. At the critical concentration p~., the 
mean-square displacement of the walker is anomalous and asymptotically 

( r2 ( t )  ) ~ t 2~ ( la)  

(k < 1/2) for case (a), and 

( r : ( t )  ) ~ t 2/aw ( lb)  

(dw > 2) for case (b). Both k and the anomalous diffusion exponent dw are 
related by (1) 

a ~  = 1 - p /av  

where/~ is the exponent for the volume fraction of the infinite network and 
v is the correlation length exponent. (2) From the critical behavior of the 
conductivity Z , - ~ ( p - p c )  ~ near Pc, one can determine the conductivity 
exponent #, which is related to de by ~1) 

dw = 2 + (~, - ~) /v  (2) 

The need for accurate evaluations of (1) and (2) for three-dimensional 
lattices has motivated much recent numerical and theoretical work. 
Recently, extensive Monte Carlo simulations of random walks ("ant-in-the- 
labyrinth" method) have been performed on randomly occupied simple 
cubic lattices, of up to 9603 sites for case (a), at the critical concentration 
p ~ 0 . 3 1 1 6 .  By using efficient vectorizable algorithms, accurate values of 
( r 2 ( t ) )  have been obtained. {3~ To determine the asymptotic value k, 
however, corrections to the scaling behavior ( la)  must be considered. 

CASE (a )  

In the third column of Table I of ref. 3 (hereafter referred to as 
Table I) are reported the effective exponents ke = d(log r) /d( log t), obtained 
by calculating the slopes between two successive values of r =  ( r 2 ( t ) )  m.  
To obtain k, the expression ke = k + const,  r -~ was assumed in ref. 3, and 
the root-mean-square (rms) deviation of the data as a function of e was 
calculated. The lowest rms deviation occurs at e ~ 1.0. Since the data of ke 
versus 1/r show a curvature for small values of r, only larger values of r 
were considered and a final linear-least-square fit yielded k =0.19_+0.01. 
The error 0.01 was estimated from those e's for which the rms deviation 
differed by a factor of two from its minimum value at e-~ 1.0. The data 
were also analyzed by taking e = 1 and fitting k between four successive 
values of r, and taking ke as the intercept of this straight-line fit (thus 
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allowing for higher-order corrections). This procedure yielded the k e values 
displayed in the fourth column of Table I, and k=0 . 190+0 . 001  was 
obtained from the last numerical points (n/> 8 in Table I). From this new 
calculation it was concluded that the error 0.01 found above was too large, 
and the error 0.003 was taken. The value k = 0.190 • 0.003 thus obtained in 
ref. 3 is close to the results of ref. 4 and seems to be apparently confirmed 
by ref. 5. A recent reanalysis of the same data with two correction terms of 
the form const/(lnt)+const'/t,  ~6) yielded the slightly larger value 
k=0.195_+0.001. Using fl/v=0.4646+_O.0201, ~7~ and v = 0.88 _+ 0.02, ~8) 
in the above equations together with k= 0 . 190_0 . 003 ,  one obtains 
dw = 4.041 _ 0.083 and # = 2.205 _+ 0.090. 

This value for # is in conflict with recent calculations of the conduc- 
tance of finite three-dimensional random resistor lattices, which give 
# =2.003 • 0.047, (9) and /~ = 2.02 • 0.04, (1~ and with the series expansion 
value /~ = 2.02_+0.05. (7) Theoretical arguments supporting a value / ~ 2 . 0  
have been given recently. It  has been shown rigorously that for hierarchical 
node-link-blob models of the conducting backbone, 1 ~< # ~< 2 for 
2~<d~<3. (H~ Based on these bounds and the fact that the value / t = 2  is 
exact for one particular hierarchical model in d = 3, it has been conjectured 
that # = 2 may be exact for the actual backbone near Pc in three dimen- 
sions. (9, 11 ) 

Motivated by the inconsistency of the ant-in-the-labyrinth value with 
the above quoted results, (7'9-11~ we have carefully reanalyzed the data of 
ref. 3, to find out whether the present inconsistency is real or a result of the 
method of analysis employed. To this end, we have considered different 
forms for the corrections to scaling and systematically studied their effects 
on the value of k. 

We consider the exponents k e reported in the third column of Table I, 
and follow the ansatz 

k e = k + c o n s t . t  -~ (3) 

According to (3), the natural way of plotting the data to see how good the 
ansatz actually works is to observe ln(ke - k) as a function of Int.  Keeping 
this idea in mind, we write (3) in the form l n ( k , - k ) = i n c o n s t - e l n t ,  
which should show a linear dependence of l n ( k e - k )  versus In t. To 
proceed further, we take k as a parameter, and obtain In const and c~ by a 
linear least-square fit. The best value of k and its error are, then, estimated 
by visual inspection of different plots. This procedure has the advantage 
that one can take into account the magnitude of the estimated error bars, 
while a weighted least-square fit would only include their relative values. 
We obtain (see Fig. 1) 

k = 0.197 + 0.004 (4) 
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Fig. 1. Plot of ln(k e -  k) versus In t for k = 0.197, with k e from the third column of Table 1 
of ref. 3. The error bars are the estimated 1% statistical error. The straight line is the result 
of the least-square fit with c~ = 0.271 _+ 0.002 and ln(const)= -1.32 _+ 0.01; see Eq. (3). 

which is larger than the values reported in refs. 3-5, but is not in disagree- 
ment with ref. 6. In order to check that the above calculation of k is not 
biased by us, we have performed a least-square fit with the three 
parameters in (3) independently, and confirmed our result 0.t97. In 
obtaining (4), we note that the value ke = 0.2068 at n = 17 (i.e., t = 2 n) in 
TableI  is the average over 15~<n~< 19. This value of ke was used in 
Eq. (3) in correspondence with the average time <t> =6.2x215 (#2<n>). 
According to (4), we obtain the new estimates dw = 3.9 _+ 0.1 and 
# = 2.08 ___ 0.09, which are consistent with the results of refs. 7 and 9-11. 

We have also analyzed several other possibilities for fitting the data. 
In all cases we obtain results consistent with (4). Using, for instance, 
<r2(t)>=at2k+bt ~, a least-square fit to the second column of Table I 
yields k-~ 0.194, but the least-square fit is satisfactory for larger times only. 
Indeed, a value k ~ 0.20 is consistent with all the data, including the shor- 
ter times. The ansatz r =  <r2(t)>m= atk(1 + b/In t+ c/t) (which is similar 
to the one used in ref. 6) yields k=0 .200  (a=1.408,  b = - 1 . 2 6 1 ,  and 
c = 2.248), but again the fit is not good for shorter times. (We mention that 
k=0.195,  a =  1.508, b =  -1.261, and c =  2.248 give results similar to the 
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case k = 0.200.) Using the successive slopes values k e again, we find for the 
ansatz ke=k+a/ lnr+b/r  the result k=0.195,  with a = - 0 . 0 1 3  and 
b = 0.240; however, the fit does not work well for smaller r. These results 
indicate that if correction terms of the form discussed in this paragraph are 
introduced, more free parameters are needed to get a satisfactory fit of the 
data at smaller r. However, too many fitting parameters are not recom- 
mended, since with a sufficient number of parameters almost any value of 
k can be fitted. We have still considered the five-parameter form k~ = 
k +a/r'+ b/r ~, and a least-square fit to the data yielded k =  0.193-t-0.004, 
with a = 0.734, b = -0.550, ct = 1.309, and fl = 1.520. 

The result (4) may also be tested in a different way, by calculating the 
fitting parameter  k in (3) as a function of the upper time tN, where the data 
for t > t N is excluded from the fit. Following this procedure, a least-square 
fit of the three parameters in (3) yields the values k(tu)=O.197, 0.196, 
0.195, 0.195, 0.194, 0.191, and 0.190, with c~=0.272, 0.267, 0.263, 0.265, 
0.261, 0.249, and 0.249, for tN=6.2X215, 214, 213, 212, 211, 21~ and 2 9, 

respectively. This calculation suggests that the actual value of k in ( la)  is 
possibly larger than (4). 

A further test to (4) is considering "second-order corrections" to the 
expression (3) directly. Since the appropriate way to test the ansatz (3) is 
observing l n ( k e - k )  as a function of In t, it seems to us that a term 

(ln t) 2 should be the natural choice for introducing another correction 
term. Thus, we propose to rewrite (3) in the new more general form 

ln(ke - k) = In const - c~ In t - e '(ln t) 2 (5) 

with four unknown parameters instead of three as in (3). Taking k as a 
parameter,  we obtained in const, c~, and c~' by a least-square fit. By a visual 
inspection of different plots, confirmed by a full least-square fit of the four 
parameters in (5), we obtain now k=0 .200+0 .002 ,  with l n c o n s t =  
-1.37___0.02, c~=0.251 _+0.005, and e '  =0.0038_+0.0004, supporting our 
result (4) and the suggestion k ~> 0.197. Note that the "second-order correc- 
tion" term in (5) increases more rapidly with time than the first-order one, 
in contrast to the usual behavior assumed for the above discussed more 
standard forms, in which higher correction terms vanish more rapidly than 
the lower order terms. This does not mean, however, that (5) is unrealistic 
for larger times. Indeed, (5) implies that k e = k + const,  t -(~+ ' 'in t), thus 
ke ~ k for t --, oo, and there is no a priori reason for expecting the (ln t) 2 
term in (5) to remain always smaller than the first-order term. We will see 
at the end of this paragraph why we still call it a second-order term. This 
unusual behavior indicates that the correction terms may be playing a 
more important  role than normally expected. Due to the slow convergence 
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of the correction terms in (5), it follows that the numerical points obtained 
for shorter times cannot be neglected. For the present data, we find that 
~ ' ~  a, indicating that the second correction term remains small compared 
with the first correction term, even for the largest available time 
t=6 .2x215 .  This is consistent with the results shown in Fig. 1, where 
within the estimated statistical errors no clear systematic deviation of the 
points is observed, and "second-order corrections" to (3) are expected to be 
small. 

When the correction term is a function of r, instead of t as in Eq. (3), 
the ansatz ke~-k + cons t - r  -~ was again applied, but no satisfactory result 
was obtained, indicating that higher order corrections are clearly required 
in this case. Here, we implement such a procedure by replacing In t by In r 
in (5). The best fit yields k=0.200_+0.002 ( l n c o n s t = - l . 7 4 _ + 0 . 0 2 ,  
c~ = 0.68 _+ 0.03, and c( = 0.21_+ 0.01), in remarkable agreement with the 
result obtained from (5), where now ~ and ~' are of the same order of 
magnitude. The value k = 0.200 _+ 0.002 is in disagreement with refs. 3-6. 

Although the same value k - 0.200 is obtained as a function of In t and 
of In r with second-order corrections according to the scheme (5), we take 
as our more conservative estimate the value k=0 .197  +0.004, obtained 
with the simpler ansatz (3). This estimate includes all the previously dis- 
cussed values of k obtained with different ansatz and the results of ref. 6, 
and is still consistent with ref. 3 within the error bars. 

CASE (b) 

Let us discuss now the evaluation of the second exponent d~, obtained 
in ref. 3 using the exact enumeration technique (l /for systems of up to 1203 
sites; there it was found that dw = 4.00 +_ 0.05 using the ansatz 1/dwe= 
1/dw + const - r -~. Here, we apply the approach 1/dwe = 1/dw + const �9 t -~ to 
the same data, the sixth column of Table I, following the same method dis- 
cussed previously for the ansatz (3). We obtain dw = 4.05 • 0.22, consistent 
with the results of ref. 3, but with larger error bars, indicating an under- 
estimation of the errors in ref. 3. This value is also consistent with the result 
dw=3.9+_0.1 calculated using (4). When the parameters dw(tN) are 
calculated from fits excluding times t > tN, as similarly done for obtaining 
k(tN), w e  find that dw(tU) is a decreasing function of tu, indicating that 
dw < 4.00. Further computational  work, for larger systems and times t, is 
required to improve the numerical results in this case. 

As discussed in ref. 1, the actual value for dw is bounded by 

ds+ 1/v<~d~dr (6) 
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where dF= d - ~ / v  is the fractal dimension and dr= gdj. is the chemical 
dimension. (1~ Accurate values for g have been obtained recently in three 
dimensions, 1/~= 1.34• Using ~/v =0.4646 • and 
v = 0.88 • (8) in Eq. (6), we find 

3.672 • 0.046 ~< dw ~< 3.875 • 0.022 (7) 

Our result dw = 3.9 • 0.1 is in agreement with these bounds. It should be 
emphasized that the Alexander-Orbach rule, (13) dw = 3d:-/2 = 3.80 • 0.03, is 
consistent with the presently available numerical results. 

In summary, it becomes clear that more theoretical work is needed in 
order to assert the correct dependence of the correction to scaling terms. 
Until this is available, it is important to find simple correction terms that 
enable one to simultaneously fit the whole set of data. In other words, the 
corrections to scaling should be as simple as possible compatible with all 
the numerical points. To omit some of them in any stage of the analysis 
may conduce to incorrect resultsJ 3~ We have found that these correction 
terms show a slower convergence of the effective exponents ke ~ k than 
would be usually expected. The more involved corrections proposed in 
ref. 6 to analyze the same data do not provide, at small r, satisfactory fits. 
The simpler ansatz k e = k + c o n s t . t  -~ gives, within the statistical error 
bars, a rather satisfactory fit of the data with k=0 .197•  
(dw = 3.9 • 0.1). When another correction term is included, Eq. (5) is found 
to be the most satisfactory one, and k ~ 0.20 is obtained, supporting the 
first-order result. Both values are consistent with the results of refs. 7, 9, 
and 10, and with the bounds in Eq. (7). 
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